1. Abdolmohammadi, J.M., & D.V. Owhoso. (2005). Auditors’ ethical sensitivity and the assessment of the likelihood of fraud. Managerial Finance 26(11): 21-32. 2. Adoboe-Mensah, N., H. Salia & E.B. Addo. (2023). Using the Beneish M-score Model to Detect Financial Statement Fraud in the Microfinance Industry in Ghana. International Journal of Economics and Financial 13(4): 47-67. 3. Alden, K., J. Timmis, P.S. Andrews, H. Veiga-Fernandes & M.C. Coles. (2012). Pairing experimentation and computational modeling to understand the role of tissue inducer cells in the development of lymphoid organs. Frontiers in Immunology 3(1): 172-190. 4. Al-Hashimy, H.N.H. (2022). A review of Accounting Manipulation and Detection: Technique and Prevention Methods. International Journal of Business and Management Invention 11(10): 82-89. 5. Anning, A.A., & M. Adusei. (2022). An analysis of financial statement manipulation among listed manufacturing and trading firms in Ghana. Journal of African Business 23(1): 165-179. 6. Bergstresser, D., & T. Philippon. (2006). CEO incentives and earnings management. Journal of Financial Economics 80(3): 511-529. 7. Cheng, Q., & T.D. Warfield. (2005). Equity incentives and earnings management. The Accounting Review 80(2): 441-476. 8. Dechow, P., R. Sloan & A. Sweeney. (1995). Detecting earnings management. The Accounting Review 70(2): 193-225. 9. Dechow, P. M., Ge, W., Larson, C. R., & Sloan, R. G. (2011). Predicting material accounting misstatements. Contemporary accounting research, 28(1), 17-82. 10. Dechow, P.M., A.P. Hutton, J.H. Kim & R.G. Sloan. (2012). Detecting earnings management: A new approach. Journal of Accounting Research 50(2): 275-334. 11. Greiner, A., M.J. Kohlbeck & T.J. Smith. (2017). The relationship between aggressive real earnings management and current and future audit fees. Auditing: A Journal of Practice & Theory 36(1): 85-107. 12. Keizer, S., & Keizer, S. (2003). Reasoning under uncertainty in natural language dialogue using Bayesian Networks. PhD Thesis, University of Twente. 13. Kononenko, I. (1990). Comparison of Inductive and Naïve Bayesian Learning Approaches to Automatic Knowledge Acquisition. Working paper. Amesterdam, The Netherlands: IOS press. 14. Koop, G., D.J. Poirier & J. Tobias. (2005). Semiparametric Bayesian inference in multiple equation models. Journal of Applied Econometrics 20(6): 723-747. 15. Kyprianidou, C. O. N. S. T. A. N. T. I. A. (2003). Analysing Basic Genetics Using Bayesian Networks and the Impact of Genetic Testing on the Insurance Industry. Unpublished master‟ s thesis, City University, London, United Kingdom. 16. Marais, A., C. Vermaak & P. Shewell. (2023). Predicting financial statement manipulation in South Africa: A comparison of the Beneish and Dechow models. Cogent Economics & Finance 11(1): 215-229. 17. Mavengere, K., & B. Dlamini. (2023). Detecting probable manipulation of financial statements. Evidence from a selected Zimbabwe Stock Exchange-Listed bank. Journal of Accounting, Finance and Auditing Studies 9(3): 17-38. 18. Pearl, J. (1995). From Bayesian networks to causal networks. In Mathematical models for handling partial knowledge in artificial intelligence (pp. 157-182). Boston, MA: Springer US. 19. Shenoy, P. P., & West, J. C. (2009). Inference in hybrid Bayesian networks with deterministic variables. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty: 10th European Conference, ECSQARU 2009, Verona, Italy, July 1-3, 2009. Proceedings 10 (pp. 46-58). Springer Berlin Heidelberg. 20. Sun, L., & P. Shenoy. (2007). Using Bayesian Networks for Bankruptcy Prediction. European Journal of Operational Research 180(2): 738-753.
|